

ENERGY STORAGE Inspection

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Research study

Energy Storage Inspection 2024

Authors

7 F I I I

Johannes Weniger Nico Orth Lucas Meissner Cheyenne Schlüter Johanna von Rautenkranz

Solar Storage Systems Research Group Hochschule für Technik und Wirtschaft (HTW) Berlin

Version 1.0 (January 2024)

Web solar.htw-berlin.de/inspektion

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

The efficiency benchmarking is based on the System Performance Index SPI (5 kW) and SPI (10 kW).

4 Inverter efficiency: Average efficiency during discharging, Standby power consumption in the discharged state.

The lower the efficiency, the shorter the discharge time of the battery.

atu

Efficiency of two hybrid inverters in discharge mode with an output power of 200 W. Data: AIT and KIT

8 The depicted graph is based on the results of a regression analysis based on the operating data of 110 PV-battery systems.

The Residential PV Market 2023 in Germany

In 2023, 4 % of all single- and two-family homes had a new PV system installed in 2023.

More than 675 000 new PV installations had a rated power between 2 kW and 20 kW.

Newly installed PV capacity in the residential segment totaled 6.4 GW.

Approximately 79 % of all new PV installations were combined with a battery storage system.

© solar.htw-berlin.de

Data: German Federal Network Agency (PV systems with a rated power between 2 kW and 20 kW), as of January 26th, 2024

Data: German Federal Network Agency (battery systems with a capacity under 20 kWh and a power of up to 20 kW), as of January 26th, 2024

Main topics of the Energy Storage Inspection 2024

1	Analysis of the German market for residential
	PV-battery systems

Comparison of the system properties based on the test reports according to the Efficiency Guideline

Simulation-based assessment of the PV-battery systems with the System Performance Index (SPI)

Main topics of the Energy Storage Inspection 2024

1	Analysis of the German market for residential
	PV-battery systems

2

Comparison of the system properties based on the test reports according to the Efficiency Guideline

Simulation-based assessment of the PV-battery systems with the System Performance Index (SPI)

4

Comparison of the operating data of PV-battery systems

Development of the PV-battery market in Germany

Rise in the number of annually deployed battery systems

htw.

System topologies of the PV-battery systems in Germany

Rated power of the newly installed PV systems up to 20 kW

16 Data: German Federal Network Agency, PV systems between 2 kW and 20 kW, class width: 1 kW

htw.

Usable battery capacity of the battery systems up to 20 kWh

htuu

Distribution of the usable battery capacity up to 20 kWh

htuu

Main topics of the Energy Storage Inspection 2024

5

Comparison of the system properties based on the test reports according to the Efficiency Guideline

Simulation-based assessment of the PV-battery systems with the System Performance Index (SPI)

Participants of the Energy Storage Inspection 2024

- For the 7th time in a row, all manufacturers of systems or components for storing solar electricity in residential buildings were invited to take part in the Energy Storage Inspection 2024.
- 12 manufacturers took part in the Energy Storage Inspection 2024 with laboratory measurements from a total of 18 systems.
- One manufacturer decided to **participate anonymously**.
- Two PV-battery systems were purchased independently and evaluated also.

Analysis of system properties according to the Efficiency Guideline

- Laboratory tests were conducted by independent testing institutes in accordance with the "<u>Efficiency Guideline for PV Storage Systems</u>".
- To each analyzed system a **system abbreviation** (e.g. A1) was assigned
- The batteries of the AC-coupled systems A1 to B1 are equipped with battery inverters. The DC-coupled systems B2 to K1 have so called hybrid inverters.
- Details about the methodology can be found in the Energy Storage Inspections 2018 and 2023.

B1 Inspection 2024		
	0	
KOSTAL PLENTICORE BI Battery-Box Premium H	G2 10/26 and BYD VS 12.8	
Battery connection	AC	
Battery capacity	12.0 kWh	
Discharge power	10.1 kW	
PV output power	-	
Efficiency class	В	

ENEDCY OTODACE

	-

KOSTAL PLENTICORE plus G2 10 and DYNESS Tower T14			
.5 kWh			
8 kW			
.0 kW			

ENERGY STORAGE B5 Inspection 2024 **KOSTAL PLENTICORE** plus G2 10 and **PYLONTECH Force H2 Battery connection** DC **Battery capacity** 13.6 kWh **Discharge power** 4.8 kW **PV** output power 10.0 kW Efficiency class В

atur

_ _	

FRONIUS Symo GEN24 10.0 Plus and BYD Battery-Box Premium HVS 10.2			
Battery connection	DC		
Battery capacity	9.9 kWh		
Discharge power	8.9 kW		
PV output power	10.2 kW		
Efficiency class	Α		

Dl ENERGY STORAGE Inspection 2024		
RCT POWER Power Stor	age DC 6.0 and Power	
RCT POWER Power Stor Battery 7.6	age DC 6.0 and Power	
RCT POWER Power Stor Battery 7.6 Battery connection	age DC 6.0 and Power DC	
RCT POWER Power Stor Battery 7.6 Battery connection Battery capacity	age DC 6.0 and Power DC 7.0 kWh	
RCT POWER Power Stor Battery 7.6 Battery connection Battery capacity Discharge power	age DC 6.0 and Power DC 7.0 kWh 5.9 kW	
RCT POWER Power Stor Battery 7.6 Battery connection Battery capacity Discharge power PV output power	age DC 6.0 and Power DC 7.0 kWh 5.9 kW 5.9 kW	

D2 ENERGY Inspect	<mark>STORAGE</mark> iqn 2024	E1 ENERGY Inspec	Y STORAGE stiqn 2024	F1 ENERGY S Inspecti	STORAGE
					•
RCT POWER Power Storag Battery 11.5	e DC 10.0 and Power	VIESSMANN Vitocharge	e VX3 Typ 4.6A8	ENERGY DEPOT Centurio 1	0 und DOMUS
Battery connection	DC	Battery connection	DC	Battery connection	DC
Battery capacity	10.6 kWh	Battery capacity	7.9 kWh	Battery capacity	15.1 kWh
Discharge power	9.9 kW	Discharge power	3.6 kW	Discharge power	7.5 kW
PV output power	10.0 kW	PV output power	4.5 kW	PV output power	10.3 kW
Efficiency class	Α	Efficiency class	B	Efficiency class	Α

G1 ENERGY S Inspecti		H 1 ENERGY S	STORAGE	
	•			e 1 1
HYPONTECH HHT-12000 u	HYPONTECH HHT-12000 und HBP-H15		GOODWE GW5000-EH and Premium HVS 7.7	BYD Battery-Bo
Battery connection	DC		Battery connection	DC
Battery capacity	13.3 kWh		Battery capacity	7.3 kWh
Discharge power	11.9 kW		Discharge power	4.9 kW
PV output power	11.7 kW		PV output power	5.0 kW
Efficiency class	R		Efficiency class	D

H2 ENERGY STORAGE Inspection 2024		
GOODWE GW10K-ET and Premium HVS 12.8	BYD Battery-Box	
Battery connection	DC	
Battery capacity	12.2 kWh	
Discharge power	10.0 kW	
PV output power	10.0 kW	
Efficiency class	B	

J1 ENERGY S Inspecti	STORAGE	K1 ENERGY Inspect	K1 ENERGY STORAGE Inspection 2024				
2.							
DC-coupled system that w	vas purchased	DC-coupled system that independently	was purchased				
Independently							
Battery connection	DC	Battery connection	DC				
Independently Battery connection Battery capacity	DC 8.9 kWh	Battery connection Battery capacity	DC 9.8 kWh				
Independently Battery connection Battery capacity Discharge power	DC 8.9 kWh 4.3 kW	Battery connection Battery capacity Discharge power	DC 9.8 kWh 4.8 kW				
Independently Battery connection Battery capacity Discharge power PV output power	DC 8.9 kWh 4.3 kW 9.8 kW	Battery connection Battery capacity Discharge power PV output power	DC 9.8 kWh 4.8 kW 10.0 kW				

J1

Attribution of the system abbreviations

System	Product name
A1	VARTA pulse neo 6
B1	KOSTAL PLENTICORE BI G2 10/26 and BYD Battery-Box Premium HVS 12.8
B2	KOSTAL PLENTICORE plus G2 5.5 and BYD Battery-Box Premium HVS 7.7
B3	KOSTAL PLENTICORE plus G2 10 and BYD Battery-Box Premium HVS 12.8
B4	KOSTAL PLENTICORE plus G2 10 and DYNESS Tower T14
B5	KOSTAL PLENTICORE plus G2 10 and PYLONTECH Force H2
C1	FRONIUS Primo GEN24 6.0 Plus and BYD Battery-Box Premium HVS 7.7
C2	FRONIUS Symo GEN24 10.0 Plus and BYD Battery-Box Premium HVS 10.2
D1	RCT POWER Power Storage DC 6.0 and Power Battery 7.6
D2	RCT POWER Power Storage DC 10.0 and Power Battery 11.5

Attribution of the system abbreviations

System	Product name
E1	VIESSMANN Vitocharge VX3 Typ 4.6A8
F1	ENERGY DEPOT Centurio 10 and DOMUS 2.5
G1	HYPONTECH HHT-12000 and HBP-H15
H1	GOODWE GW5000-EH and BYD Battery-Box Premium HVS 7.7
H2	GOODWE GW10K-ET and BYD Battery-Box Premium HVS 12.8
H3	GOODWE GW6000-ET-20 and LX F6.6-H
H4	GOODWE GW10K-ET-20 and LX F16.0-H-20
I1	DC-coupled system of an anonymously participating manufacturer
J1	DC-coupled system, independently purchased
K1	DC-coupled system, independently purchased

Usable battery capacity of the analyzed systems

htu.

Comparison of data sheet specifications to measured values

- For 15 of the 20 systems tested, lower usable storage capacities were determined in the laboratory test than were declared on the data sheet.
- The specified depth of discharge to protect against deep discharge is often the reason why the measured values are lower than the data sheet values.
- The usable storage capacity of the system G1 is 1.7 kWh (11%) lower than the value specified on the data sheet.

Nominal output power of the DC-coupled systems

- In practice, the ratio of inverter output power to PV generator power is often between 80 % and 90 %.
- In DC-coupled systems, the so-called PV rated output power limits the power output of the PV-battery system.
- Of the 18 systems with hybrid inverters, 12 can deliver a nominal AC power of between 9.8 kW and 11.7 kW.

System	B2	B3	B4	B5	C1	C2	D1	D2	E1
Power in kW	5.5	10.0	10.0	10.0	6.1	10.2	5.9	10.0	4.5
System	F1	G1	H1	H2	H3	H4	I1	J1	K1
Power in kW	10.3	11.7	5.0	10.0	6.0	10.0	10.0	9.8	10.0

Nominal discharge power of the analyzed systems

htu.

Maximum battery discharge current depending on its temperature

htuu

Average battery efficiency

htu.
Energy conversion pathways of the different system topologies

Average path efficiency for comparison of the conversion efficiency

Average conversion efficiency of AC battery discharging

Average efficiency of the energy conversion pathways

	PV2AC	PV2BAT	AC2BAT	BAT2AC	
A 1					98 %
AI			92.1 %	92.0 %	
B1			96.1 %	96.3 %	
B2	95.5 %	93.9 %		93.9 %	97 %
B3	96.3 %	95.8 %		95.8 %	
B4	96.3 %	94.6 %		94.7 %	
B5	96.3 %	94.6 %		94.7 %	<u>96 %</u>
C1	96.6 %	96.8 %	95.6 %	95.8 %	fic
C2	97.9 %	97.9 %	96.5 %	97.2 %	- 95 % 9
_ D1	96.4 %	94.7 %	94.0 %	94.3 %	23 /0 <u>C</u>
는 D2	97.9 %	98.1 %	97.7 %	97.8 %	0.0
E1 ک	94.8 %	93.6 %	93.5 %	93.8 %	- 94 %
> F1	97.1 %	97.4 %	96.9 %	96.8 %	
" G1	97.1 %	97.2 %	97.1 %	97.3 %	
Η1	95.3 %	96.3 %	95.7 %	96.3 %	93% 0
H2	96.6 %	97.0 %	96.7 %	97.0 %	ő
H3	94.7 %	92.9 %		92.8 %	- 92 %
H4	96.7 %	96.4 %		96.0 %	
I1	95.1 %	95.5 %	95.1 %	95.4 %	
J1	95.9 %	92.0 %		91.2 %	- 91 %
K1	95.4 %	95.0 %		95.6 %	
Ø	96.2 %	95.5 %	95.6 %	95.2 %	
	PV feed-in	PV charging	AC charging	AC discharging	
	Conversion pathway		© solar.htw-berlin.de		

40 Average pathway efficiencies according to the "Efficiency Guideline for PV Storage Systems" 2.0.

PV feed-in pathway efficiency

41 W1 and W2: PV inverter used for assessing the AC-coupled systems with the SPI (5 kW) and SPI (10 kW).

PV battery charging pathway efficiency

htuu

AC battery charging pathway efficiency

htu.

AC battery discharging pathway efficiency

հեպ

Frequency distribution of nighttime electricity consumption

45 Frequency distribution of the nighttime electricity consumption of different households based on 10 s measurement data. Class width: 50 W, data: Schlemminger et al. - Dataset on electrical single-family houses and heat pump load profiles in Germany.

Frequency distribution of nighttime electricity consumption

46 Frequency distribution of the nighttime electricity consumption of different households based on 10 s measurement data. Class width: 50 W, data: Schlemminger et al. - Dataset on electrical single-family houses and heat pump load profiles in Germany.

Partial load efficiencies of an inefficient hybrid inverter

47 Average frequency distribution of the nighttime electricity consumption of different households based on 10 s measurement data. Class width: 50 W, data: Schlemminger et al. - Dataset on electrical single-family houses and heat pump load profiles in Germany. htu

Partial load efficiencies of different hybrid inverters

Transient response of two storage systems

htw.

Dynamic control deviations

Stationary control deviations

Standby power consumption with fully charged battery

Standby power consumption with discharged battery

Different Standby power consumptions at discharged durations

հեպվ

Main topics of the Energy Storage Inspection 2024

Comparison of the system properties based on the test reports according to the Efficiency Guideline

Simulation-based assessment of the PV-battery systems with the System Performance Index (SPI)

Comparison of the operating data of PV-battery systems

2

Methodology of the simulation-based system evaluation

- Simulation of the **operating behavior** of tested PV-battery systems over a year.
- The System Performance Index (SPI) evaluates the systems based on the energy flows at the grid connection point. It considers the different economic values of the energy fed into the grid at 0.08 €/kWh and the energy drawn from the grid at 0.4 €/kWh.
- Parameterization of the "<u>PerMod</u>" simulation model (version 2.2) based on the laboratory measurement results determined in accordance with the efficiency guideline.
- Including the sizing, conversion, control and standby losses determined in the laboratory.
 Lab test results
 Simulation test
 Energy flow analysis
 System performance

System Performance Index SPI (5 kW) and SPI (10 kW)

1st reference case for the System Performance Index SPI (5 kW)

2nd reference case for the System Performance Index SPI (10 kW)

Please note: SPI (5 kW) and SPI (10 kW) are not comparable due to the different characteristics of the two reference cases.

Assignment of the systems to the reference cases

- Depending on the size of the power electronics and battery storage, the efficiency rating with the SPI (5 kW) or SPI (10 kW) is appropriate.
- Only systems with usable battery capacities smaller than 8.0 kWh were rated with the SPI (5 kW).
- For a rating with the SPI (10 kW) a usable battery capacity smaller than 16.0 kWh was required.
- The classification was based on the usable storage capacity determined in the laboratory test.
- 7 systems were rated with the SPI (5 kW) and 14 systems were assessed with the SPI (10 kW). Both metrics were determined for the AC-coupled system A1.

Example for determining the System Performance Index (SPI)

htuu

Loss analysis of the systems assessed with the SPI (5 kW)

htuu

Loss analysis of the systems assessed with the SPI (10 kW)

Definition of the efficiency classes for PV-battery systems

 Due to the different SPI values, the threshold values for reaching the individual efficiency classes vary.

Class	SPI (5 kW)	SPI (10 kW)
Α	≥ 92.5 %	≥ 94.5 %
В	≥ 90.5 %	≥ 93.5 %
С	≥ 88.5 %	≥ 92.5 %
D	≥ 86.5 %	≥ 91.5 %
E	≥ 84.5 %	≥ 90.5 %
F	≥ 82.5 %	≥ 89.5 %
G	< 82.5 %	< 89.5 %

SPI (5 kW) and efficiency classes of the analyzed systems

63 The AC-coupled system A1 was assessed in combination with the PV inverter SMA Sunny Boy 5.0.

SPI (10 kW) and efficiency classes of the analyzed systems

Why is a high system efficiency important?

- Efficiency losses reduce the cost savings potential of a PV-battery system. The economic losses for the systems evaluated with the SPI (10 kW) lay between 94 €/a and 276 €/a.
- Those who choose a highly efficient PV-battery system can save up to an additional 1820 € within the first ten years of operation compared to a less efficient system.

65 Highly efficient system: D2, less efficient system: K1, framework conditions of the 2nd reference case.

Summary of the results of the system evaluation

- The Energy Storage Inspection 2024 analyzed and compared the energy efficiency of 20 battery systems.
- In the reference case up to 5 kW, a DC-coupled system from RCT POWER came out on top with an SPI (5 kW) of 92.6%.
- It was closely followed by the hybrid inverters FRONIUS Symo GEN24 10.0 Plus and KOSTAL PLENTICORE plus G2 5.5, both of which competed in combination with the BYD Battery-Box Premium HVS 7.7.
- The RCT POWER Power Storage DC 10.0 and Power Battery 11.5 system achieved the highest SPI (10 kW) with a value of 96.4%.
- 16 of the 20 systems tested scored with very good system efficiency and achieved either the efficiency classes A or B.
- However, the range of system efficiency is still very wide the least efficient system only achieved the efficiency class G.

Main topics of the Energy Storage Inspection 2024

Analysis of the German market for residential
PV-battery systems

Comparison of the system properties based on the test reports according to the Efficiency Guideline

Simulation-based assessment of the PV-battery systems with the System Performance Index (SPI)

Comparison of the operating data of PV-battery systems

2

Operating data analysis of PV-battery systems

- In the fourth topic of the 2024 energy storage inspection, the operating results of **more than 100 households** with PV systems and battery storage were compared.
- For the analysis, the companies Eigensonne and Kostal provided operating data from several hundred residential homes.
- In addition to the measurement data for the **operating year of 2022**, information on the rated PV power and the usable storage capacity of the installed battery storage system of the 110 compared households is available.
- Among other things, the chapter answers the questions of how much the degree of self-sufficiency of different residential buildings with PV systems varies and by how many percentage points a battery storage system increases solar-electric self-sufficiency.
- The following results and graphs are explained in detail in the Energy Storage Inspection 2024.

Degrees of self-sufficiency with different PV power outputs

With a PV system, the analyzed households achieve a degree of self-sufficiency between 19 % and 61 %. The average self-sufficiency achieved by households with a PV system is 40 %.

69

Increase in self-sufficiency by using a battery storage system

By installing a battery storage system, households achieve self-sufficiency levels between 31 % and 95 %. The median is 70 % - on average, households with a PV-battery system only draw 30 % of their power demand from the public grid.

70

Self-sufficiency depending on the annual electricity consumption

On average, the degree of self-sufficiency of the observed households with a PV system decreases by 2.2 % as the electricity consumption increases by 1000 kWh/a. The degrees of self-sufficiency of the households vary by up to 25 percentage points.

71

htuu

Increase in self-sufficiency by using a battery storage system

72 It can be observed that battery storage systems have a greater influence on increasing the degree of self-sufficiency of a household, especially of those with a low annual electricity consumption.

Frequency distribution of the increase in self-sufficiency

73

Degrees of self-sufficiency depending on the normalized PV power

The degree of self-sufficiency of the investigated households with PV-battery system tends to increase with the ratio of PV power to annual electricity demand. From a ratio of 2.0 kW per 1000 kWh/a on, an increasing saturation effect can be observed.

74

Degrees of self-sufficiency depending on the normalized capacity

htuu

considering the normalized battery capacity.

75

Influence of system dimensioning on the self-sufficiency

While an increase in storage capacity and rated PV power has a positive effect on self-sufficiency, the degree of self-sufficiency achieved differs greatly in some cases despite similar system dimensioning. This is mainly due to differences in the load profiles.

76

htuu

Summary of the results of the operating data analysis

- By installing a PV system with a rated output power between 4.8 kW and 13 kW, the inspected homes achieve an average degree of self-sufficiency of 40 %.
- In nine out of ten households, the battery storage system can increase the degree of self-sufficiency by 18 to 38 percentage points.
- Solar-electric self-sufficiency with a PV system and a battery storage system reduces the amount of electricity drawn from the grid by an average of 70 %.
- The benefits of a solar storage system are significantly influenced by demandbased dimensioning, consumption behavior, and the efficiency of the system components.
- For better comparability of the operating results of PV battery systems, it is advisable to normalize the rated output power of the PV system and the usable storage capacity to the annual electricity consumption.

htu.

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

solar.htw-berlin.de/inspektion